Two different combinations of RNA-binding domains determine the RNA binding specificity of nucleolin.
نویسندگان
چکیده
Nucleolin is an abundant nucleolar protein involved in several steps of ribosome biogenesis. The protein is highly conserved through evolution and possesses four RNA-binding domains (RBD), which are likely to determine its RNA binding specificity. Previous studies have shown that nucleolin interacts with two different RNA targets. The first is a small stem-loop structure, the nucleolin recognition element (NRE), found all along the pre-ribosomal RNA. The second is a short single-stranded RNA sequence, the evolutionary conserved motif (ECM), located five nucleotides downstream of the first processing site in the pre-ribosomal RNA 5' external transcribed spacer. Biochemical, genetic, and structural studies have shown that the first two RBD of nucleolin are necessary and sufficient for the specific interaction of nucleolin with the NRE motif. In this work, we have studied the interaction of nucleolin with the ECM sequence. Deletion and mutational analyses showed that all four RBDs of hamster nucleolin were required for the interaction with the ECM sequence. This RNA binding specificity is conserved between hamster and Xenopus laevis, whereas the Xenopus protein does not interact with the NRE. Nucleolin is the first example of a protein that requires four RBDs for its interaction with an RNA target, demonstrating that a single protein can use different combinations of RBD to interact specifically with several RNA sequences.
منابع مشابه
RNA recognition by the joint action of two nucleolin RNA-binding domains: genetic analysis and structural modeling.
The interaction of nucleolin with a short stem-loop structure (NRE) requires two contiguous RNA-binding domains (RBD 1+2). The structural basis for RNA recognition by these RBDs was studied using a genetic system in Escherichia coli. Within each of the two domains, we identified several mutations that severely impair interaction with the RNA target. Mutations that alter RNA-binding specificity ...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملThe C-terminal domain of nucleolin accelerates nucleic acid annealing.
We report that the abundant nucleolar protein nucleolin accelerates nucleic acid annealing. Nucleolin accelerates annealing of complementary oligonucleotides and of oligonucleotides that contain a limited number of mismatches. The annealing activity of nucleolin can be localized to a C-terminal region consisting of two RNA binding domains (RBD3 and RBD4) and the RGG(9) domain (RBD3-RBD4-RGG(9))...
متن کاملRNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins.
Numerous RNA-binding proteins have modular structures, comprising one or several copies of a selective RNA-binding domain generally coupled to an auxiliary domain that binds RNA non-specifically. We have built and compared homology-based models of the cold-shock domain (CSD) of the Xenopus protein, FRGY2, and of the third RNA recognition motif (RRM) of the ubiquitous nucleolar protein, nucleoli...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 17 شماره
صفحات -
تاریخ انتشار 2001